If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3.9x^2-25=0
a = 3.9; b = 0; c = -25;
Δ = b2-4ac
Δ = 02-4·3.9·(-25)
Δ = 390
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{390}}{2*3.9}=\frac{0-\sqrt{390}}{7.8} =-\frac{\sqrt{}}{7.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{390}}{2*3.9}=\frac{0+\sqrt{390}}{7.8} =\frac{\sqrt{}}{7.8} $
| -24r+25r-36=-43 | | -3n+3n=4 | | x+42=29 | | 17.0/y=6.3 | | x/6-2=11 | | 5(8-y)=-1(y-4) | | 11r^2−7r+5=8r^2+5 | | 13−4x=1−x* | | 36+12x+x^2=36+12x+x2= | | 47x+9x-16x+36=-44 | | 9=r/4+5 | | 35n+16n-37n=28 | | 3(2x+2)=2x+4 | | -6n+5-4n=5 | | X/x-1-2/x=1/x-1 | | z-z+z-z+z+1=13 | | 2x+13=5+7x | | 17v-15v+3v+v-4v-2=18 | | 4x+6=5(7x+5)+105 | | x-2+6=-4 | | 5(7-z)=-1(z-9) | | -15j+8j+17j-8j=-20 | | 8v-6v+v-2v+1=8 | | 3(a-5)=2(2a=9) | | 31p-22p-8=28 | | 6x^2+5x-27=−6 | | 2/3x=7/8 | | n+1-2=-2 | | -47k-34k+48k-21k-5=49 | | 30/n-7n+12=-25 | | -(6n)2n=5 | | n+-2=-2 |